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Today’s Lecture

Outline

How to Write a Proof
● Synthesizing definitions, intuitions,

and conventions.

Proofs on Numbers
● Working with odd and even numbers.

Universal and Existential Statements
● Two important classes of statements.

Variable Ownership
● Who owns what?



To kick things off:

What is a proof?



Proof Writer (You) Proof Reader

Proof as Dialog

The proof reader is 
honest but skeptical.

The proof writer’s job is 
to take the reader on a 
journey from ignorance 

to understanding.

A mathematical proof is a 
dialog between two parties:

a proof writer and
a proof reader.

The proof writer knows 
a mathematical fact.



Conventions

IntuitionsDe
fin

iti
on

sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Writing our First Proof



Theorem: If n is an even integer,
then n2 is even.
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sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



An integer n is called even if
there is an integer k where n = 2k.
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8

0

2 · 5

2 · 4

2 · 0



Conventions

IntuitionsDe
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sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Theorem: If n is an even integer, then n2 is even.

Let’s Try Some Examples!



Theorem: If n is an even integer, then n2 is even.

k k

n = 2k

Let’s Draw Some Pictures!

n2 = 2(2k2)

n = 2k
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IntuitionsDe
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sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Our First Proof! 
Theorem: If n is an even integer, then n2 is even.
 

Proof: Assume n is an even integer. We want to
show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■



Our First Proof! 
Theorem: If n is an even integer, then n2 is even.
 

Proof: Assume n is an even integer. We want to
show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■

This symbol 
means “end of 

proof”



Our First Proof! 
Theorem: If n is an even integer, then n2 is even.
 

Proof: Assume n is an even integer. We want to
show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■

To prove a statement of the 
form

“If P is true, then Q is true,”

start by asking the reader to 
assume that P is true.



Our First Proof! 
Theorem: If n is an even integer, then n2 is even.
 

Proof: Assume n is an even integer. We want to
show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■

To prove a statement of the form

“If P is true, then Q is true,”

we assume P is true, then need to show 
that Q is true. Here, we’re telling the 

reader where we’re headed.



Our First Proof! 
Theorem: If n is an even integer, then n2 is even.
 

Proof: Assume n is an even integer. We want to
show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■

This is the definition of an even 
integer. We need to use this definition 

to make this proof rigorous.



Our First Proof! 
Theorem: If n is an even integer, then n2 is even.
 

Proof: Assume n is an even integer. We want to
show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■

Notice how we use the value of k that 
we obtained above. Giving names to 

quantities, allows us to manipulate them. 
This is similar to variables in programs.



Our First Proof! 
Theorem: If n is an even integer, then n2 is even.
 

Proof: Assume n is an even integer. We want to
show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■

Our ultimate goal is to prove that n2 is 
even. This means that we need to find 

some m where
n2 = 2m. Here, we're explicitly showing 

how we can do that.



Our First Proof! 
Theorem: If n is an even integer, then n2 is even.
 

Proof: Assume n is an even integer. We want to
show that n² is even.

 

Since n is even, there is some integer k such
that n = 2k. This means that

 

n2 = (2k)2

= 4k2

= 2(2k2).
 

From this, we see that there is an integer m
(namely, 2k2) where n2 = 2m. Therefore, n2

is even, which is what we wanted to show. ■

Hey, that's what we 
said we were going to 

do! We’re done.



Our Next Proof



Theorem: For any integers m and n,
if m and n are odd, then m + n is even.



Conventions

IntuitionsDe
fin

iti
on

sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



An integer n is called odd if
there is an integer k where n = 2k+1.

11

7

1

2 · 5 + 1

2 · 3 + 1

2 · 0 + 1



Going forward, we’ll assume the following:

  1. Every integer is either even or odd.
  2. No integer is both even and odd.
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IntuitionsDe
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sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Theorem: For any integers m and n,
if m and n are odd, then m+n is even.

Let’s Try Some Examples!



Theorem: For any integers m and n,
if m and n are odd, then m+n is even.

Let’s Do Some Math!
k r

2k+1 2r+1

(2k+1) + (2r+1) = 2(k + r + 1)

1
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sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.
Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)
Similarly, because n is odd there must be some integer r such that
                         n = 2r + 1.         (2)
By adding equations (1) and (2) we learn that
                          m + n = 2k + 1 + 2r + 1
         = 2k + 2r + 2
         = 2(k + r + 1).      (3)
Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■



Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.
Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)
Similarly, because n is odd there must be some integer r such that
                         n = 2r + 1.         (2)
By adding equations (1) and (2) we learn that
                          m + n = 2k + 1 + 2r + 1
         = 2k + 2r + 2
         = 2(k + r + 1).      (3)
Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

We ask the reader to make an arbitrary 
choice. Rather than specifying what m and 
n are, we’re signaling to the reader that 
they could, in principle, supply any choices 

of m and n that they’d like.
 

By letting the reader pick m and n 
arbitrarily, anything we prove about m and 
n will generalize to all possible choices for 

those values.



Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.
Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)
Similarly, because n is odd there must be some integer r such that
                         n = 2r + 1.         (2)
By adding equations (1) and (2) we learn that
                          m + n = 2k + 1 + 2r + 1
         = 2k + 2r + 2
         = 2(k + r + 1).      (3)
Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

To prove a statement of the form

“If P is true, then Q is true,”

start by asking the reader to assume 
that P is true.



Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.
Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)
Similarly, because n is odd there must be some integer r such that
                         n = 2r + 1.         (2)
By adding equations (1) and (2) we learn that
                          m + n = 2k + 1 + 2r + 1
         = 2k + 2r + 2
         = 2(k + r + 1).      (3)
Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

To prove a statement of the form

“If P is true, then Q is true,”

after assuming P is true, you need to 
show that Q is true.



Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.
Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)
Similarly, because n is odd there must be some integer r such that
                         n = 2r + 1.         (2)
By adding equations (1) and (2) we learn that
                          m + n = 2k + 1 + 2r + 1
         = 2k + 2r + 2
         = 2(k + r + 1).      (3)
Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

Numbering these equalities lets us refer 
back to them later on, making the flow of 

the proof a bit easier to understand.



Theorem: For any integers m and n, if m and n are odd, then
m + n is even.

Proof: Consider any arbitrary integers m and n where m and n are
odd. We need to show that m + n is even.
Since m is odd, we know that there is an integer k where

                         m = 2k + 1.     (1)
Similarly, because n is odd there must be some integer r such that
                         n = 2r + 1.         (2)
By adding equations (1) and (2) we learn that
                          m + n = 2k + 1 + 2r + 1
         = 2k + 2r + 2
         = 2(k + r + 1).      (3)
Equation (3) tells us that there is an integer s (namely, k + r + 1) 
such that m + n = 2s. Therefore, we see that m + n is even, as 
required. ■

This is a complete sentence! Proofs are 
expected to be written in complete 

sentences, so you’ll often use 
punctuation at the end of formulas.

 

We recommend using the “mugga mugga” 
test – if you read a proof and replace 
all the mathematical notation with “mugga 
mugga,” what comes back should be a 

valid sentence.



Some Little Exercises
● Here’s a list of other theorems that are true about odd 

and even numbers:
● Theorem: The sum and difference of any two even numbers is 

even.
● Theorem: The sum and difference of an odd number and an 

even number is odd.
● Theorem: The product of any integer and an even number is 

even.
● Theorem: The product of any two odd numbers is odd.

● Going forward, we’ll just take these results for granted. 
Feel free to use them in the problem sets.

● If you’d like to practice the techniques from today, try 
your hand at proving these results!



Universal and Existential Statements



Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.
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IntuitionsDe
fin
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on

sWhat terms are 
used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

This result is true for every possible 
choice of odd integer n. It’ll work 
for n = 1, n = 137, n = 103, etc.



Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

We aren’t saying this is true for 
every choice of r and s. Rather, 
we’re saying that somewhere out 

there are choices of r and s where 
this works.



Universal vs. Existential Statements

● A universally-quantified statement is a 
statement of the form

For all x, [some-property] holds for x.
● We've seen how to prove these statements.
● An existentially-quantified statement is 

a statement of the form
There is some x where [some-property] holds for x.

● How do you prove an existentially-
quantified statement?



Proving an Existential Statement

● Over the course of the quarter, we will 
see several different ways to prove an 
existentially-quantified statement of the 
form
There is an x where [some-property] holds for x.

● Simplest approach: Search far and 
wide, find an x that has the right 
property, then show why your choice is 
correct.
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used in this proof? 

What do they 
formally mean?

What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



2 · 0 + 1

2 · 1 + 1

2 · 2 + 1

2 · 3 + 1

2 · 4 + 1

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Try Some Examples!

3 = 2 2 – 1 2

5 = 3 2 – 2 2

7 = 4 2 – 3 2

9 = 5 2 – 4 2

1 = 1 2 – 0 2

=

=

=

=

=



k +1

Theorem: For any odd integer n,
there exist integers r and s where r2 – s2 = n.

Let’s Draw Some Pictures!

k

(k+1)2  –  k2  =  2k+1
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used in this proof? 

What do they 
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What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r2 – s2 = n.
Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1
        =   n.

This means that r2 – s2 = n, which is what we needed 
to show. ■



Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r2 – s2 = n.
Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1
        =   n.

This means that r2 – s2 = n, which is what we needed 
to show. ■

We ask the reader to make an arbitrary 
choice. Rather than specifying what n is, 
we’re signaling to the reader that they 

could, in principle, supply any choice n that 
they’d like.



Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r2 – s2 = n.
Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1
        =   n.

This means that r2 – s2 = n, which is what we needed 
to show. ■

As always, it’s helpful to 
write out what we need 
to demonstrate with the 

rest of the proof.



Theorem: For any odd integer n, there exist integers
r and s where r2 – s2 = n.

Proof: Let n be an arbitrary odd integer. We will show
that there exist integers r and s where r2 – s2 = n.
Since n is odd, we know there is an integer k where
n = 2k + 1. Now, let r = k+1 and s = k. Then we see 
that

      r2 – s2 =   (k+1)2 – k2

        =   k2 + 2k + 1 – k2

        =   2k + 1
        =   n.

This means that r2 – s2 = n, which is what we needed 
to show. ■

We’re trying to prove 
an existential 

statement. The easiest 
way to do that is to 
just give concrete 

choices of the objects 
being sought out.



Check the appendix to this
slide deck for more about
who gets to choose values.



Time-Out for Announcements!



Working in Pairs
● Starting with Problem Set One, you are 

allowed to work either individually or in pairs.
● Each pair should make a single joint submission.

● We have advice about how to work effectively 
in pairs up on the course website – check the 
“Guide to Partners.”

● Want to work in a pair, but don’t know who to 
work with? Fill out this Google form and 
we’ll connect you with a partner on Friday.

https://forms.gle/SqRws5Vi4mH1zyWh7


Problem Set 0
● Problem Set 0 is due this Friday at 

1:00PM.
● (It needs to be completed individually.)

● Need help getting Qt Creator installed? 
There’s a Qt Creator help session 
running tonight, 7-9 PM, in Durand 353.



CS103 ACE
● Reminder: There’s an optional companion course, 

CS103 ACE, that runs in parallel with CS103.
● CS103 ACE meets Tuesdays 6:00 – 7:50PM and 

provides additional practice with the course 
material in a small group setting.

● The first course meeting is next Tuesday.
● Interested? Apply online using this link.
● The CS103 ACE materials are available to 

everyone. You can pull them up here.

https://docs.google.com/forms/d/e/1FAIpQLSdZWrRh6st1rBXNvwlmtDkcOGuNPGxggNaOTZa5fwmRrz6c4w/viewform
https://cs103ace.stanford.edu/


Preview: Lecture Participation
● 5% of your course grade is allocated to lecture participation, 

which starts next Wednesday.
● We’ll use PollEV to ask questions in lecture to help solidify 

your understanding.
● You’ll get participation credit for the day if you make a 

sincere effort at answering those questions, regardless of 
whether your answers are correct.

● You get three free missed lectures.
● If you aren’t able to make it to lecture, or would prefer to 

watch asynchronously, you can opt to count your final exam 
score in place of your participation grade. (We’ll send out a 
form in Week 4 that you can use to opt out.)



  Outdoor Activities   
● You’re less than fifty miles from grassy mountains, 

redwood forests, Pacific coastline, beautiful wetlands, 
and more.

● Want to explore the area to see what it has to offer? 
Check out our (unofficial) Outdoor Activities Guide.

https://cs103.stanford.edu/outdoor_activities
● A sampler of what to check out:

● Drive to the observatory in the mountains near San Jose and 
take in the views.

● Visit a beach with an enormous colony of elephant seals.
● Walk in redwood forests and pick your own bay leaves.
● Grab cheap, high-quality food from unassuming strip malls.

https://cs103.stanford.edu/outdoor_activities


Back to CS103!



Theorem: If n is an integer,
then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.
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What does this 
theorem mean? 
Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Floors and Ceilings
● The notation ⌈x⌉ represents the ceiling of x, 

the smallest integer greater than or equal to x.
● What is ⌈1⌉? What’s ⌈1.2⌉? What’s ⌈-1.2⌉?
● Intuition: Start at x on the number line, then move 

to the right until you hit a tick mark.
● The notation ⌊x⌋ represents is the floor of x, 

the largest integer less than or equal to x.
● What is ⌊1⌋? What’s ⌊1.2⌋? What’s ⌊-1.2⌋?
● Intuition: Start at x on the number line, then move 

to the left until you hit a tick mark.
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What are the techniques 

for doing so?



Theorem: If n is an integer, then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.

Let’s Draw Some Pictures!

k kⁿ/₂⌈ⁿ/₂⌉ ⁿ/₂

n = 2k

⌊ⁿ/₂⌋



k+1 k⌈ⁿ/₂⌉ ⌊ⁿ/₂⌋

Theorem: If n is an integer, then ⌈ⁿ/₂⌉ + ⌊ⁿ/₂⌋ = n.

Let’s Draw Some Pictures!

n = 2k + 1
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What do they 
formally mean?

What does this 
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Why, intuitively, 

should it be true?

What is the standard 
format for writing a proof? 
What are the techniques 

for doing so?



Theorem: If n is an integer, then ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n.

Proof: Let n be an integer. We will show that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

 

 

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and

 
In either case, we see that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n, as required. ■

⌈n2 ⌉+ ⌊n2 ⌋ = ⌈2 k
2 ⌉+ ⌊2 k

2 ⌋
= ⌈k⌉+⌊k⌋
= 2 k
= n .

⌈n2 ⌉+ ⌊n2 ⌋ = ⌈2 k+1
2 ⌉+ ⌊2 k+1

2 ⌋
= ⌈k+1

2 ⌉+ ⌊k+1
2 ⌋

= (k+1)+k
= 2 k+1
= n .

This is called a proof by cases (or 
proof by exhaustion). We split 
apart into one or more cases and 
confirm that the result is indeed 

true in each of them.
 

(Think of it like an if/else or switch 
statement.)



Theorem: If n is an integer, then ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n.

Proof: Let n be an integer. We will show that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

 

 

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and

 
In either case, we see that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n, as required. ■

⌈n2 ⌉+ ⌊n2 ⌋ = ⌈2 k
2 ⌉+ ⌊2 k

2 ⌋
= ⌈k⌉+⌊k⌋
= 2 k
= n .

⌈n2 ⌉+ ⌊n2 ⌋ = ⌈2 k+1
2 ⌉+ ⌊2 k+1

2 ⌋
= ⌈k+1

2 ⌉+ ⌊k+1
2 ⌋

= (k+1)+k
= 2 k+1
= n .

At the end of a split into cases, it’s 
a nice courtesy to explain to the 

reader what it was that you 
established in each case.



Theorem: If n is an integer, then ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n.

Proof: Let n be an integer. We will show that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n. To do so,
we consider two cases:

Case 1: n is even. This means there is an integer k such that n = 2k.
Some algebra then tells us that

 

 

Case 2: n is odd. Then there’s an integer k where n = 2k + 1, and

 
In either case, we see that ⌊ⁿ/₂⌋ + ⌈ⁿ/₂⌉ = n, as required. ■

⌈n2 ⌉+ ⌊n2 ⌋ = ⌈2 k
2 ⌉+ ⌊2 k

2 ⌋
= ⌈k⌉+⌊k⌋
= 2 k
= n .

⌈n2 ⌉+ ⌊n2 ⌋ = ⌈2 k+1
2 ⌉+ ⌊2 k+1

2 ⌋
= ⌈k+1

2 ⌉+ ⌊k+1
2 ⌋

= (k+1)+k
= 2 k+1
= n .



To Recap



Writing a good proof requires a blend of
definitions, intuitions, and conventions.

Conventions

IntuitionsDe
fin

iti
on

s



Definitions tell us what we need to do in a proof. 
Many proofs directly reference these definitions.

An integer n is even if there 
is an integer k where n = 2k.

An integer n is odd if there is 
an integer k where n = 2k+1.



Building intuition for results requires creativity, 
trial, and error.

Let’s Draw Some Pictures!

Let’s Do Some Math!

Let’s Try Some Examples!



Mathematical proofs have established conventions 
that increase rigor and readability.

● Prove universal 
statements by making 
arbitrary choices.

● Prove existential 
statements by making 
concrete choices.

● Prove “If P, then Q” by 
assuming P and 
proving Q.

● Write in complete 
sentences.

● Number sub-formulas 
when referring to 
them.

● Summarize what was 
shown in proofs by 
cases.

● Articulate your start 
and end points.



Your Action Items
● Read “Guide to ∈ and ⊆,” “Guide to 

Proofs,” and “Guide to Partners.”
● There’s a lot of goodies in there.

● Finish and submit Problem Set 0.
● Don’t put this off until the last minute!

● (Optionally) Fill out the Problem Set 
Matchmaker form.
● Want us to connect you with someone else? 

This is a great way to get started.



Next Time
● Indirect Proofs

● How do you prove something without actually proving 
it?

● Mathematical Implications
● What exactly does “if P, then Q” mean?

● Proof by Contrapositive
● A helpful technique for proving implications.

● Proof by Contradiction
● Proving something is true by showing it can't be false.



Appendix: Proofs as Dialogs



Proofs as a Dialog
Let n be an arbitrary odd integer.

  

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

  

Now, let z = k – 34.

Proof Writer (You) Proof Reader

n = 137

Reader Picks
k = 68

Neither Picks
z = 34

Writer Picks



Proofs as a Dialog
Let n be an arbitrary odd integer.

  

Since n is an odd integer, there is an integer
k such that n = 2k + 1.

  

Now, let z = k – 34.

Proof Writer (You) Proof Reader

n = 137

Reader Picks
k = 68

Neither Picks
z = 34

Writer Picks

Each of these variables has a 
distinct, assigned value.

 

Each variable was either picked by 
the reader, picked by the writer, or 
has a value that can be determined 

from other variables.



Who Owns What?
● The reader chooses and owns a value if you use wording 

like this:
● Pick a natural number n.
● Consider some n ∈ ℕ.
● Fix a natural number n.
● Let n be a natural number.

● The writer (you) chooses and owns a value if you use 
wording like this:
● Let r = n + 1.
● Pick s = n.

● Neither of you chooses a value if you use wording like this:
● Since n is even, we know there is some k ∈ ℤ where n = 2k.
● Because n is odd, there must be some integer k where n = 2k + 1.



Proofs as a Dialog

Let x be an arbitrary even integer.

Then for any even x, we know that x+1 is odd.

Proof Writer (You) Proof Reader

⚠ ⚠

x = 242

Reader Picks

What does
”for any even 242”

mean?



Proofs as a Dialog

Let x be an arbitrary even integer.

Since x is even, we know that x+1 is odd.

Proof Writer (You) Proof Reader

x = 242

Reader Picks



Every variable needs a value.

Avoid talking about “all x” or “every x”
when manipulating something 

concrete.

To prove something is true for any 
choice of a value for x, let the reader 

pick x.



Once you’ve said something like

Let x be an integer.
Consider an arbitrary x ∈ ℤ.

Pick any x.

Do not say things like the following:

This means that for any x ∈ ℤ …
So for all x ∈ ℤ …



Proofs as a Dialog

Pick two integers m and n where m+n is odd.

Let n = 1, which means that m+1 is odd.

Proof Writer (You) Proof Reader

m = 103

Reader Picks

⚠ ⚠

n = 166

Reader Picks

Hold on! I
already chose
a value for n!



Proofs as a Dialog

Let n = 1.

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader

⚠ ⚠



Proofs as a Dialog

Let n = 1.

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader

m = 166

Reader Picks

⚠ ⚠

n = 1

Writer Picks

Do we even
need n here?



Proofs as a Dialog

Pick any integer m where m+1 is odd.

Proof Writer (You) Proof Reader

m = 166

Reader Picks



Be mindful of who owns what variable.

Don’t change something you don’t own.

You don’t always need to name things, 
especially if they already have a name.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

